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Abstract

A new fourth order compact difference scheme for the three dimensional convection diffu-

sion equation with variable coefficients is presentcd. The novelty of this new difference scheme

is that it only re(pfires 15 grid points and that it can be decoupled with two colors. The

entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel

type iterative method. This is compared with the known 19 point fourth order comI)act differ-

ence scheme which requires four colors to decouple the computational grid. Numerical results,

with multigrid methods implemented on a shared menmry parallel computer, are presented to

compare the 15 point and the 19 point fourth order compact schemes.

Key words: 3D convection diffusion equation, fourth order compact difference schemes, multigrid

method, parallel computation.

1 Introduction

The three dimensional (3D) convection diffusion equation with variable coefficients can be written

as

_,,_ + _,_ + _,:: + v(x, ,a,z) ._ + q(a:,v, z)_,_ + _(_, y, z).: = 1(_, y, _), (l)

*E-maih jzhang_cs.uky.edu, URL: http://www.cs.uky.edu/_jzhang. The research of this author was supported

in part by the U.S. National Science Foundation under the grant CCR-9902022, and in part by the University of

Kentucky Center for Computational Sciences.

rE-mail." lixin:qcsr.uky.edu. :['he research of this author was supported by the University of Kentu(:ky Center for

Computational Sciences.

;E-maih kouatchou(ggsfc.nasa.gov, URL: http://cesdisl.gsfc.nasa.gov/_kouatch. This author is also affiliated

with Morgan State University and his research was supported by NASA under the grant No. NAGS-3508.



for a specified forcing function f in a continuous domain _2 ill 3D space with suitable boundary

conditions prescribed on 0_}, the boundary of f_. Here the coefficients p, q, r, the forcing function

f, as well as tile unknown function _, are assumed to be continuously differentiable and have the

required partial deri_atives oil _, where f_ is a union of rectangular solids.

Equation (1) is encountered most commonly in the modeling of transport processes, including

heat transfer and fluid flows [22, 25], such as the groundwater pollution problems and reservoir

displacement problems [2, 3]. It describes tile convection and diffusion of various physical quan-

tities, e.g., momentum, heat, material concentrations, etc. Traditional numerical discretization

schemes for approximating convection diffusion equations usually employ centered differencing for

the second order diffusion terms and some form of upwind differencing for the first order con-

vection terms [23]. For convection dominated problems, basic iterative methods fail to converge

when used to solve linear systems resulting from the standard central difference discretization.

TILe comtmted solutions from tile standard upwind difference scheme is only first order accurate.

Very fine discretization has to be employed to compute approximate solution with high accuracy,

which in turn requires enormous computational power for 3D problems. Thus, tile use of high

order discretization schemes is one way to obtain high accuracy solution with moderate computa-

tional cost. A 19 point fom'th order compact finite difference scheme for (1) has been published

in [34], based on tile trlmcated Taylor series expansions. Other fourth order compact schemes for

tile 3D elliptic partial differential equations can be found in [1, ll]. Alternative high accuracy

discretization schemes for 2D convection diffusion problems have also been reported in [19, 20, 21].

A parallelizable multigrid method with the 19 point fourth order compact scheme using a four

color decoupling of computational grid has been developed by Gupta and Zhang in [15].

In parallel calculations with a Gauss-Seidel type iterative method, a computational grid

decoupled with four colors needs four parallel subsweeps to update tile entire grid. If tile standard

second order central difference or upwind difference schemes are used, the computational grid

can be decoupled with two colors and updated in two parallel subsweeps. For the 2D convection

diffusion equation, it can be shown that a fourth order compact scheme needs tim closest 9 grid

points, for wlfich the computational grids can be decoupled with minimum 4 colors. It would be

advantageous to find a fourth order compact scheme that does not need more than two colors to

decouple the computational grid and still offers computed solution with high accuracy. This does

not seem to be possible for tile 2D convection diffusion problems.

The work of Gupta and Kouatchou [13] shows that it is possible to derive a fourth order

compact difference scheme for the 3D Poisson equation that requires only 15 grid points in the

approximation scheme. The current work is to derive a 15 point compact difference scheme for the

3D convection diffusion equation with variable coefficients, to design a parallel multigrid solution

method to solve the resulting sparse linear systems, and to compare its numerical performance
with the existing 19 point compact scheme.

This paper is organized as follows. In Section 2, we present the method for deriving tile 15

point compact difference scheme. In Section 3, we discuss the multigrid solution method. Section 4

contains strategies for decoupling the computational grid to extract parallelism in a Gauss-Seidel

iteration. Numerical results are presented in Section 5 to compare the solution accuracy and

parallel efficiency of tile 15 and 19 point compact difference schemes. A brief conclusion is given

in Section 6. The stencil coefficients of tile 15 point fourth order compact finite difference scheme

are listed in Appendix A.
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Figure 1: Tile 27 point stencil of tile 3D grid points in a reference cube.

2 Description of Derivation Procedure

Tile discretization is carried out on a uniform 3D grid with a unifornl mesh size h. We, use a local

coordinate system where the unit cubic grids are labeled as in Figure 1. Tim approximate value

of a flmction u(x, y, z) at an interior mesh point (i,j, k) is denoted by u0. The approximate wdues

of its 26 immediate neighboring mesh points are denoted by ut, l = 1, 2, ..., 26, as in Figure 1. The

discrete values of Pt, qt, rt and fi for / = 0, 1, ..., 26, are defined analogously. A 3D finite difference

scheme is compact if it only involves at most the 26 nearest neighboring grid points (of the center

point) in the approximation formula. For convenience we divide the grid points into three groups:

,4 = {0, 1,2,3,4,5,6}, B = {7,8,9, 10, 11, 12, 13, 14, 15, 16, 18}, c = {19,20,21,22,23,24,25,26},

see Figure 1. Group A contains the essential grid points needed for a 3D finite difference scheme

for (1). Well known examples are tbe standard central difference scheme and the upwind difference

scheme. The 19 point compact scheme in [34] utilizes the grid points in groups A and B. Tim 15

point compact scheme that we will derive later utilizes the grid points in groups A and C only.

The approach that we take to develop high order compact difference schemes was advocated

by Spotz and Carey [27, 28, 29]. It has been used with a symbolic computation procedure by

Ge and Zhang [11] to derive high order compact difference schemes for the 3D linear elliptic

partial differential equations with variable coefficients. The entire procedure for deriving high

order compact schemes is straightforward and can be done step by step. The truncation errors

of tim lower order approximations are approximated to higher orders to yield a high order finite

difference scheme for the initial approximation. A unique finite difference scheme is given by the

symbolic computation package Maple. All that needs to be done is complex substitution and term

collection processes, which are especially suitable for symbolic computation packages.

For a sufficiently smooth solution u, its first and second order partial derivatives with respect

to x at an interior grid point 0 can be approximated by

0u _ 6_u - -/'2 0a_ t? 0% +O(hG), (2)
Ox 6 0x a 120 Ox 5

o'-',, _ _,, h" 0_ h_ 0% + o(h0), (3)
Ox" 12 Ox 4 360 Ox 6

where 6_ and 6_ are the first and second order central difference operators with respect to x. Similar

partial derivatives with respect to y and z can be approximated to O(h 6) order analogously.



Differentfinitedifferenceschemescallbederivedbysubstitutingtheapproximationfornmlas
(2),(3), andtheir counterpartsfor the g and z variables, for the first and second order partial

derivatives in (1) and dropping tile reminders of appropriate order. As an example, we derive in

the following some compact difference schemes up to the fourth order. For this purpose, tile O(h 4)

and the higher order truncation error terms in (2) and (3) can be ignored. The substitution yields

It 2 (1 04 1 04 1 04 03 03 03 )6 \2 +  bTiy + + P-52s  + q-o7 + r-5-J  u + o(h = o. (4)

The standard 7 point second order central difference schelne is obtained by dropping all the O(h 2)

and the higher order terms in (4). To obtain a difference scheme with a higher order, the O(h 2)

terms in (4) cannot be dropped and has to be approximated further. Since tile O(h 2) terms have

an h,2 factor, they can be approximated to the second order accuracy and still yield the fourth

order accuracy for the whole approximation scheme.

The key idea for increasing approximation accuracy is that the truncation errors pertaining

to the discrete operator may be represented in the final discrete equation. For instance, in the

case of the central difference operator for the first order derivative, the O(h 2) and the higher order

truncation error terms can be represented using the original differential equation such that the

order of accuracy is increased depending on how many terms are represented. To illustrate this

idea, we differentiate (1) with respect to x, y, and z, in sequence, to obtain

037-_ Of oau Oau Op Ou Ou "2 Oq Ou 02u Or 0_ 02u

Ox a -- Ox Oy20x Oz'20x Ox Ox P'Ox 2 Ox Oy qoyox Ox Oz r o--_x , (5)

Oau Of oau Oau Op Ou O'2u Oq Ou O2u Or Ou O'2u

Oy 3 -- Oy OyOx 2 Oz'20y Oy Ox P-&yOx Oy Oy q-oy "- Oy Oz r ozo----_y, (6)

0371 Of 03U 03'l Op Ou O2*l Oq Ou 02_ Or Ou 0'2_1

Oz a - Oz OzOy 2 OzOx 2 Oz Ox P o--£-_x Oz Oy q-o-_y Oz Oz r Oz---_2 (7)

for the third order partial derivatives, and repeat the process to obtain

04u 02f Ou 4 2 0PO"u 0"2p Ou _ Oq 02u 0'2q Ou
Ox 4 - Ox" Oz"Ox 2 Ox Ox" Oz"- Ox Z-_x _yOx Ox 2 0y

Oau Or 02u 0'% Ou Oau Oau 0%

- P'_z3 - 2--_x O--_z 0,2 0 z q oyox 2 r ozox--------_ OyeOx.,, (S)

Ou 4 0'2f 201) 02u O4u 04u 02p Ou Oau
Oy 4 Oy2 -_y OyOx Oy20x "2 Oz'20y '2 Oy 2 0x P'Oy20x

02q Ou 20qO2u 03u 02r Ou Or 0'2u Oaur--, (9)
Oy 20y Oy Oy 2 q-_ya Oy '2 Oz 20y OzOy OzOy 2

0% 0'2.f 0% 04u 02p Ou 0!o O"u Oau

Oz 4 - Oz" Oz20y '2 Oz20x ''- Oz 20x 20zOzOx P_

02q Ou _zz 0'2u Oau 02r Ou 20rO2u oauOz '2 0y 2 OzOy q Oz20y Oz '2 0z Oz Oz 2 - r-_z3 (i0)

for the fourth order partial derivatives. If the right hand sides of these partial derivatives can be

approximated to the O(h 2) order, then the finite difference scheme (4) can be approximated to the

O(h 4) order, per our previous discussion.

The 15 point compact scheme can be derived by considering cross derivatives of the same

order together and by utilizing their symmetry relation. This is different from the strategies used



forderivingthe19pointcompactscheme,inwhichcrossderivativesareapproximatedindividually
[lJ].

Using the Taylor series expansion for the fourth order cross derivatives, we have

O'lu O'lu 04u 1

0z20£, + Oz.,Oy _ + Oj,_Ox-----_,- _ _[Ul._ + u_a + w,_6 + w,.2 + w,o + *,',_1+ u.,,_ + w,_._,

+16u0 - 4(ul + u2 + ua + u4 + u5 + u6)]. (11)

In addition, exploiting the relations among the third order cross derivatives, we get

Oau Oau 1

Oy"-O----'--7+ Oz"O-----7__ _[(u19 + u2a + u.,.2 + '"-,6 - 4ui) - (w_,o + *,21 + u.,4 + "e5 - 4,,:,)],(12)

Oau Oau 1

Oz"-O-----Tj+ Oz"-O-----_.j_ _[(,,20 + _,_9 + *,'_,a+ ,,',4 - 4,,2) - (7,2, + w,., + *,',6 + "'-,_ - 4,,.,)],(13)

0:"u 0au 1

OLt:20-......_qt- 01120-....-._ _ 4---_t3[(1119 qt_ ,120 --I- 1121 -k 71'2'2 -- 4115) -- (7123 Jr" 1124 Jr-11'25 -_-?1'26 -- 4,,6)].(14)

Using Taylor series expansion again, the second order cross derivatives can be approximated as

02,, _ 1
0y0ir. 8h 2 [(_'19 + u23 + 1/21 + ?'_5) - (_'22 + "26 + ?'20 + ',24)] + 0(1'.2) . (15)

O=u and i*-'uWith the same strategy, _ _ can be approximated using the grid points in groups A and
C only. Therefore, all the partial derivatives in (5) to (10) can be approximated to O(h."-) order

using the first and second order central difference operators involving the grid points in groups .4

and C. Now if we substitute tile finite difference expressions of (5) - (10), using (11) - (15) and

their counterparts, into (4), we will have a fourth order compact finite difference scheme for (1)

defined at tile grid points in groups A and C.

We used the Maple symbolic computation package for the extensive algebraic manipulations.

The Maple code is similar to that in [11] used to derive tile 19 point compact scheme. The

computations were performed on an HP Exemplar supercomputer at the University of Kentucky

Center for Computational Sciences. Appendix A lists the resulting formula of the 15 point fourth

order compact difference scheme that can be used directly. The coefficients are scaled appropriately

so that they have the same scale as those of the 19 point compact scheme of [a4]. The scaling is

done for the convenience of comparing truncation errors of the two difference schemes.

Next, we compare the leading O(h 4) terms in the truncation errors of the 15 and 19 point

compact schemes. To simplify notations and still make meaningflfl comparison, we assume that

the convection coefficients p, q and r are constant in _. The leading truncation error terms were

computed by our Maple code.

Tile leading truncation error with the O(h 4) term of the 19 point compact scheme is

E'-_= -12__,voT_,+%-7_+_T_,,)-]-_ \ o_.,+q-_7+_T_ _)
1 f 04u 04u 04u 04_1 0"1_ 041' "_

- a_U'qo,-_ +_'qo-ga-Y+ q__ + _ _ +t,__ + _,__ )
1 { 0% 0% 0% 0% 0% 0"%, "_

-_ U'_ + q_ + _ +7,_ + q_ + _)
1 f 05u 0%, 05u 05u 05" 057'

36 kP_ + q_ + r_ + t'_ + q_ + " OzaOx--------'---g,_,_



1 ( 0% 0% 0% 0% 0% 0% ]
72 _,Oy40x 2 + Oy20x"---_ + Oz"-Ox'----_ + Oz40z----5 + Oz40y 2 + Oz_Oy "1

/

1(oo. oo,,
360 \ Ox 6 + _ + Oz 6]"

Similarly, ttle leading truncation error with the O(h)) term of the 15 point compact schenm is

( 0% 0% 0%El_ = EI._ - Pq oz"-OyOx + PI OzOy20--"""_"+"q70zOyOx"

05u O_l 0%_ O6u "_
A- p oz2Oy20 x -+-q oz2OyOx 2 -4-7 0zOy2Ox2 A- O"z2_y,20X2 / .

We note that Ea5 contains all terms of El9, as well as a few extra terms involving the cross

derivatives of all three variables. The most visible observation is that the largest coefficient factor

for E15 is 3 times larger than that for E19, if the magnitude of the convection coefficients is around

1. It follows that, statistically, the errors of the 15 point compact scheme are a factor of 3 larger

than the corresponding errors of the 19 point compact scheme. However, if the magnitude of the

convection coefficients is large, the coefficient factor of E15 behaves like O(iAff_Re_), while that of

E19 behaves like O(_Re'_). Here, Re denotes the magnitude of the convection coefficients. Hence,

the magnitude of the convection coefficients affects the accuracy of both schemes inversely.

3 Multigrid Solution Method

Each of the fourth order compact finite difference discretization schemes result in a system of linear

equations of the form

Au = b,

where A is the coefficient matrix, u is the solution vector (unknown), and b is the right hand

side vector, which includes the forcing term and boundary condition information. Each row of A

corresponding to an interior node away from the boundary contains 15 (or 19) nonzero entries for

the 15 (or 19) point compact schemes. Those rows corresponding to the nodes next to the boundary

contain fewer nonzero entries. In general, A has 15 (or 19) nonzero diagonals. The linear system

has to be solved by some solution technique to yield a solution, i.e., u = A-lb. For the current 3D

problems, the dimension of A is in general very large. Direct solution method based on Gaussian

elimination is usually refrained from consideration due to the excessive requirements on computer

memory and CPU time. Iterative techniques are viewed as a more viable means in solving 3D

problems. The major disadvantage of many iterative techniques is that their convergence may not

be guaranteed for solving general sparse linear systems. Even if an iterative method converges for

solving a given problem, its convergence rate is usually dependent on many factors, e.g., on the

size of the linear system. In the current situation, the size of the linear system is reflected by the
mesh size h.

The coefficient matrix will be used many times in an iterative method. It is usually computed

explicitly and stored before it is utilized. On average, each row of the coefficient matrix of the

19 point compact scheme, Alo, has 4 more nonzero entries than that of the 15 point compact

scheme, A19. Then A15 uses at least 21.05% less storage space. This may be an advantage in 3D

computations where computer memory is usually a major constraint.

For the 19 point compact scheme, it is possible to show that the convergence of some basic

iterative methods, such as Jacobi and Gauss-Seidel methods, is guaranteed if the cell Reynolds



numbercondition
Re,, = Idl,I' 1}< l

2h

is satisfied. Under this condition, A may be weakly diagonally dominant, i.e., tile inequality

]t_01 _> }-_.__-s1 Ic_tl holds for all rows of A, using rile stencil notation in (16). A rigorous convergence

proof for tile 2D analogous problenl with constant coefficients is given in [33] and its generalization

to tile 3D problem is straightforward, tlowever, even if this cell Reynolds nmnber condition is

violated, numerical experiments show that Gauss-Seidel method still converges, regardless of tile

magnitude of Reh [31, 32, 34]. (A rigorous proof for the 1D case can be found in [35].)

It is well known that classical iterative (relaxation) methods converge slowly for solving

large sparse linear systems. Many iterative methods have also been used to solved 2D convection

diffusion equations discretized by other schemes [4, 6, 7, 12, 24, 26, 37]. Our choice of linear system

solver is multigrid method which has been shown to be very effective for solving discretized elliptic

problems [8, 30].

Tile multigrid method is hased on the idea that classical relaxation methods such as Gauss-

Seidel iteration strongly damp the oscillatory error components, but converge slowly for stnooth

error components, ttence, after a few relaxation sweeps, we compute the smooth residual and

project it to a coarser grid on which the smooth error components become more oscillatory. Solving

tile residual equation on a coarse grid, interpolating tile error correction hack to the title grid, and

adding it to tile current approximate solution give the two level method. The multigrid method

exploits the idea that the residual equation on the coarse grid has a similar structure as the original

problem on the fine grid and the basic idea of the two level tnethod can be applied recursively.

Therefore, on the coarse grid, relaxation sweeps are carried out and the smooth residual is projected

to a coarser grid. This process may go down to a coarsest grid where a direct solver or several

relaxation sweeps are employed to obtain a solution (both approaches are cheap because the size of

tile linear system on the coarsest grid is small). Then the corrections are interpolated back to finer

grids until the process reaches the finest grid and the title grid approxinlate solution is corrected.

The procedure just described is a simple multigrid V cycle algorithm. A muhigrid V(ul, u2) cycle

algorithm is to do Ul relaxation sweeps on a given grid before going to a coarser grid and to do

u2 relaxation sweeps after adding the coarse grid correction to tile current approximation. For an

introduction to the multigrid method and other multigrid cycling algorithms, see Briggs [5] and

Wesseling [30].

For the 19 point compact scheme with constant convection coefficients, Fourier smoothing

analysis was conducted in [15]. It shows that the Gauss-Seidel relaxation has a smoothing factor

that is strictly less than 1, which indicates that the multigrid method with a Gauss-Seidel relax-

ation will converge regardless of tile magnitude of the cell Reynolds number (constant convection

coefficients throughout the computational domain).

Similar Fourier smoothing analysis may be conducted to show that the Gauss-Seidel relax-

ation with the 15 point compact scheme also has a smoothing factor that is smaller than 1 for any

constant convection coefficients.

Multigrid techniques for solving 2D and 3D convection diffilsion equations, discretized by the

fourth order compact schemes, has been studied extensively recently [14, 15, 16, 18, 17, 31, 32, 36].

For more detailed description of the multigrid method with the 19 point compact scheme, see [15].

The 15 point compact scheme can be accommodated straightforwardly by modifying the relex-ant

(relaxation and residual computation) parts in the existing nmltigrid method.
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Figure 2: Decoupling the 3D grid points with four colors for Gauss-Seidel relaxation with the 19

point compact scheme.

4 Multicoloring Strategies for Parallelism

It is well known that Jacobi iterative method can be fully parallelized. The drawback of the Jacobi

method is that when it is used as a smoother in the multigrid method, it usually needs to be

damped by a damping factor which is difficult to estimate for most practical problems. Even

with a damping factor obtained by trial and error, the smoothing effect of the (damped) Jacobi

relaxation is usually poor.

The lexicographic Gauss-Seidel relaxation, which has a better smoothing effect than the

Jacobi relaxation, is often used as the smoother in multigrid method. For parallelization and

vectorization benefit, we may reorder the grid points by dividing them into several colored groups

so that parallel relaxation sweeps can be carried out within each group. In the 2D case, four colors

are needed to decouple a 9 point compact scheme. In the 3D case with our 19 point compact

scheme, four colors are sufficient to completely decouple the 3D grid points [15]. For simplicity, we

assume that (R)ed, (B)lack, (G)reen and (O)range colors are used. For a grid point with a given

color, it is necessary that the nearest grid points along the three coordinate directions are marked

with different colors. Figure 2 depicts a reference grid point colored with red and its 18 nearest

neighboring grid points are colored with black, green and orange. Note that updating a red point

needs the values of 2 nearest and 4 next nearest grid points marked with each of the other three

colors. For the 19 point compact discretization scheme, we noted above that if the grid is colored

by four colors, all grid points with each color can be updated simultaneously on parallel computers

and four subsweeps can be carried out to perform a Gauss-Seidel relaxation over the whole grid.

This approach is referred to as four color Gauss-Seidel relaxation.

It is interesting that a 3D computational grid with the 15 point compact difference scheme can

he decoupled with only two colors [13]. This is shown in Figure 3. It can be seen that a reference

R(ed) point is linked to 14 other B(lack) points with the 15 point compact scheme. Hence, two

color red-black Gauss-Seidel relaxation with the 15 point compact scheme can update the entire

computational grid in two parallel subsweeps, while the four color Gauss-Seidel relaxation needs
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point compact scheme.

four parallel subsweeps with the 19 tmint compact scheme. This difference could be utilized for

the advantage of the 15 point compact scheme on parallel computers.

The colored Gauss-Seidel relaxation leads to highly parallclizable solvers. Parallelization is

obtained since the grid points with each color are decoupled and all the equations of a single

color can be computed independently of tile other colors. The computations are performed in a

mlmber of parallel operations equal to the number of independent colors. In addition to the gains

in parallelization, practical experience showed that better multigrid commrgence and smoothing

properties are usually obtained with multiple color ordering.

5 Numerical Validation

Two test problems are chosen to numerically validate the new 15 point compact scheme and the

parallel multigrid solution method. We compare its performance with that of the 19 point compact

scheme. For our experiments, we expect the 15 point compact scheme to be slightly less accurate

than the 19 point compact scheme but to cost less per multigrid cycle.

The rnultigrid method described in [15] is used to solve the sparse linear systems arising from

the fourth order compact discretizations. Red-black and four color Gauss-Seidel relaxations are

used with the 15 and 19 point compact schemes respectively as the multigrid smoothers. The com-

putations are terminated when the mean norm of the difference of the successive approximations,

defined as

)_ N--1 N-I N-1

XZZ '°) ("-""
?l, ij k -- llij k

i=1 j=l k=l

(N- 1) 3

is smaller than 10 -m. Here (N - 1) a is tile number of interior grid points (unknowns) and n is

tile number of iterations. The errors reported are the maximum absolute errors over tile entire

discrete grid points.



Table 1: Comparison of maximum absolute errors for Test 1 with different mesh sizes and Re.

Re=0

Re= 1

Re = 10

15 Point Scheme

tt = 1/32

4.02(-5)
3.88(-5)

1.95(-5)

h = 1/64

2.52(-6)

2.42(-6)

1.22(-6)

h = 1/128

1.57(-7)
1.51(-7)

7.62(-8)

19 Point Scheme

h= 1/32 h.= 1/64

1.04(-5) 6.52(-7)

1.01(-5) 6.28(-7)

6.73(-6) 4.22(-7)

2.72(-4) 1.22(-5)

2.60(-3) 1.92(-4)

h = 1/128

4.07(-8)

3.93(-8)

2.63(-8)

Re = 100 1.28(-3) 8.13(-5) 5.11(-6) 1.08(-6)

Re = 1000 1.27(-2) 9.07(-4) 5.73(-5) 1.29(-5)

The computations are conducted on an SG1 Power Challenge parallel comtmter with 4 pro-

cessors and a 512 MB shared memory. The code is written in standard Fortran 77 and is run in

double precision. Parallelization is achieved by adding parallel derivatives to tile loops in (col-

ored) relaxation and in residual computation subroutines. The interpolation procedure is not

parallelized.

Test 1. For the first test problem, the following coefficients are specified for (1)

p = Re sin y sin z cos x, q=Resinxsinzcosy, r=Resinxsinycosz.

The computational domain is tile unit cube _ = (0, 1) 3. The constant Re represents the magnitude

of the convection coefficients and simulates the Reynolds number in a flow simulation. The Dirichlet

boundary conditions and tile forcing term f are set to satisfy the exact solution u = cos(4x + 6y +

8z).

Table 1 shows the maximum absolute error comparison with the 15 and 19 point compact

schemes with different mesh sizes and different Re. Note that both schemes are of fourth order

accuracy, in the fact that the maximum absolute errors decrease approximately by a factor of 16

when the mesh size is halved. The computed solutions from the 19 point compact scheme are

slightly more accurate than the corresponding solutions from the 15 point compact scheme. The

difference is about a factor of from slightly larger than 3 to slightly less than 5. This result agrees

with our truncation error analysis in Section 2.

The number of multigrid V(1,1) iterations for both schemes is listed in Table 2 with different

mesh size and different Re. Multigrid grid independent convergence rate is achieved for both

schemes with Re _< 100, although the 19 point compact scheme converged more quickly. The

convergence rates of both schemes are inversely affected by the magnitude of Re. Note that the

accuracy of the computed solution from both schemes is inversely affected by the magnitude of Re.

The CPU time in seconds with multiple processors is compared in Table 3 with different

mesh sizes and a fixed Re = 10. For reference, the number of iterations in eacb case is listed in

the last row. We notice that, with one processor (similar to serial computations), the 15 point

compact scheme actually took more CPU time to converge (since more iterations are needed for

convergence), in spite of tile fact that it requires less arithmetic operations in each iteration.

However, as more processors are utilized, the 15 point compact scheme is actually faster than the

19 point compact scheme. The difference would be larger should we be able to use more processors.

For large Re, Table 2 indicates a substantial increase in the number of multigrid V(1,1)

iterations. To reduce the number of iterations, a multigrid V(2,2) cycle may be used. The test

results (CPU seconds) with different mesh sizes and a fixed Re = 1000 are listed in Table 4. We
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Table2: Number of multigrid V(1,1) iterations for Test 1 with different mesh sizes and Re.

15 Point Scheme 19 Point Scheme

h= 1/32 h= 1/64 h = 1/128 h = 1/128

Re = 0 12 12 12 11

Re = 1 12 12 12 11
ll

h= 1/32 h= 1/64

10 11

10 11

11 11

26 27

52 56

Re = 10 12 12 12

Re = 100 29 30 29 26

Re = 1000 51 57 71 66

Table 3: Multiprocessor CPU time in seconds (multigrid V(1,1)) for solving Test 1 witl, different

1/32

mesh sizes and Re = 10.

h =

15 Point

h = 1/64 h, = 1/128

]] 12

19 Point 15 Point 19 Point 15 Point

1 processor 1.92 1.92 16.49 15.40 139.34 129.31

2 processors 1.15 1.17 9.24 8.99 75.99 71.25

3 processors 0.92 0.87 6.92 7.01 55.88 53.74

4 processors 0.73 0.71 5.63 5.81 43.61 44.02

Iterations 12 I l 12 I l 11

19 Point

point out that tile speedup with 4 processors for tile 15 point COnlpact scheme with h. = 1/128 is

3.21. It is 2.99 for tile 19 point compact scheme. Hence tile two colorable 15 point compact scheme

appears to be more scalable.

Test 2. The convection coefficients of (1) for this test problem are chosen as

p = Rex(1 - y)(1 - 2z), q = Rey(1 - z)(l - 2x), r = Rez(1 -x)(1 - 2z).

The Dirichlet boundary conditions and tim forcing flmction are specified to satisfy tile exact flmc-

tion u = sin rrx sin Try sin rrz. In all calculations for this problem, nmltigrid V(2,2) cycle iterations

are used. Table 5 tabulates the maximum absolute errors of the computed solutions from both tile

Table 4: Multiprocessor CPU time in seconds (nmltigrid V(2,2)) for solving Test 1 with different

mesh sizes and Re = 1000.

h = 1/32 h = 1/64

15 Point 19 Point 15 Point 19 Point

85.19

II 35

1 processor 8.29 8.87 82.56

2 processors 4.82 5.23 45.79 49.35

3 processors 3.73 3.73 34.31 38.16

4 processors 3.09 3.03 27.71 31.47

Iterations 31 30 35

h = 1/128

15 Point 19 Point

747.24 703.27

402.78 385.26

288.71 288.50

233.15 235.23

37 34

ll



Table5: Comparisonof maximumabsoluteerrorsfor Test2withdifferentmeshsizesandRe.

15PointScheme 19PointScheme
tt=1/32 It=1/64 h= 1/128 h=1/32 h= 1/64 h=l/128

Re = 0 3.48(-6) 2.18(-7) 1.36(-8) 9.04(-7) 5.65(-7) 3.53(-9)

Re = l 3.43(-6) 2.14(-7) 1.34(-8) 8.77(-7) 5.48(-8) 3.43(-9)

Re = 10 3.41(-6) 2.13(-7) 1.33(-8) 1.03(-6) 6.46(-8) 4.04(-9)

Re = 100 2.60(-5) 1.64(-6) 1.03(-7) 1.56(-5) 9.78(-7) 6.12(-8)

Re = 1000 4.42(-4) 2.83(-5) 1.77(-6) 2.97(-4) 1.87(-5) 1.17(-6)

Table 6: Number of multigrid V(2,2) iterations for Test 2 with different mesh sizes and Re.

15 Point Scheme 19 Point Scheme

h=1/32 h= 1/64 h= 1/128 h=1/32 h= 1/64 h= 1/128

Re =0 8 8 8 8 8 8

Re= 1 8 8 8 8 8 8

Re = 10 9 9 9 8 9 8

Re = 100 14 14 14 16 16 16

Re = 1000 28 27 32 31 25 29

15 and 19 point compact schemes, when the mesh sizes and Re change. The computed solutions

from the 15 point compact scheme are very close to those from the 19 point compact scheme, with

a difference of a factor of approximately 3. The difference is actually smaller when Re is large.

Increasing the number of relaxation sweeps at each level of the multigrid algorithm helps

reduce the convergence difference between the 15 and 19 point compact schemes. The results in

Table 6 show that, in some cases, the 15 point compact scheme converge even faster than the 19

point compact scheme.

In Table 7, we compare the parallel efficiency of the two schemes with different Re and a

fixed h = 1/128 when different number of processors are utilized. The parallel run time is affected

by the convergence rates of the multigrid iterations, which in turn are affected by the magnitude

of Re for both schemes. If the convergence rates are the same, the 15 point compact scheme is
faster.

6 Conclusion

We derived a new fourth order compact finite difference scheme for the 3D convection diffusion

equation with which the computational grid can be decoupled with only two colors, when Gauss-

Seidel type iterative method is used to solve the resulting sparse linear systems. A parallel imple-

mentation of a multigrid method is discussed. Numerical experiments are conducted to compare

the new compact difference scheme with the existing 19 point compact difference scheme.

Our studies show that the 15 point compact scheme may have the advantage of delivering

fast solution on parallel computers. Our tests show that with 4 processors, multigrid method with

the 15 point compact scheme needs less run time than with the 19 point compact scheme, if tire

multigrid convergence rates do not differ a lot. The richer parallelism of the 15 point compact

12



Table7: MultiprocessorCPUtimeinseconds(multigridV(2,2))forsolvingTest2 withdifferent
meshsizeh =/128 and different Re.

Re = 10 Re = 100 Re = 1000

15 Point 19 Point 15 Point 19 Point 15 Point 19 Point

1 processor 182.86 188.20 305.19 333.23 648.63 604.37

2 processors 99.04 102.19 165.24 181.84 352.26 328.10

3 processors 72.32 76.31 112.46 136.18 256.83 245.26

4 processors 56.45 61.46 94.52 108.74 199.67 197.46

Iterations 9 9 16 32 29

scheme will be more advantageous if more processors are employed. Another noticeable advantage

of the 15 point compact scheme is that it uses 21.05% less memory than the 19 point compact

scheme and requires less computational time per nmltigrid cycle.

For certain convection diffusion problems with boundary layers, uniform discretization may

not be suitable, llowever, grid transformation can be used to transform a graded grid into a

mfiform grid, on which the fourth order compact scheme can be applied, see [10, 9, 38] for details.
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Appendixes

A The 15 Point Fourth Order Compact Difference Scheme

The 15 point fourth order compact finite difference scheme for Equation (1) can be written as

6 26

/=0 /=19

(16)

where the stencil coefficients are given as:

,) ,) .)

ct0 = -[28 + (Pl - P:; + q2 - q4 + r5 -- rG)h + (Po + q(_ + ro)h'],

1
ctl = 4+_(2p0+3pl +p_-pa+p4+ps+p6)h

15



1
+ _[4p_+ Po(Pl - P3) + qo(P2 - P4) + to(P5 - p6)]h 2,

1
(_2 = 4+_(2qo+ql +3q2+q3-q4+q5+q6)h

+ l[4q_ + Po(ql - q:_) + qo(q'2 - q4) + ro(q5 - q6)]h 2,

1

a3 = 4-_(2po-Pl +p2+3p3+p4+ps+P6)h

+ 814P_) - Po(Pl - P3) - qo(P2 - P4) - ro(P5 - p6)]h 2,

1

a4 = 4 - _(2qo + ql -- q',_+ q3 q- 3q4 + q5 + q6)h

1 .)

+ _[4q_ -Po(ql - qz) - qo(q')- - q4) - ro(q5 - q6)]h 2,

_5 = 4 + 4(2ro + rl + r.2 + r3 + r4 -1-3r5 - q6)h

+ l[4r_ +po(rl -- r3) + qo(r2 - r4) + ro(r5 -- r6)]h 2,

_ = 4-1(2ro+rl +r,_,+ra+r4-r5+3q6)h

1 ,)

+ -_[4r_) -- po(rl -- r3) -- qo(r2 -- r4) -- ro(r5 -- r6)]h 2,

a19 2 + 4(po+qo+ro)+p',.-p4+ps-p6+ql -q3

1

+ q5 -- q6 + rl - r3 + r'2 -- ra]h + _(Poqo + poro + qoro)h 2,

1 1
c_,_,o = 2 1614(p°-q°-r°)+P2-P4+Ps-P6+ql-q3

- q5 + q6 + rl - r3 - r2 + r4]h - 1 ._
-_(Poqo + poro - qoro)h',

1 1

a21 - 2 16 [4(500 +q°-r°)-p2+p4+pS-p6-qa +q3

1

+ q5 - q_ + rl - r3 + r.2 - r4]h + _(poqo - poro - qoro)h 2,

a_,_ = _+ 4(po-qo+ro)-p2+p4+p5-p6-ql +q3

1

- q5 + q6 + rl - r3 - r2 + r4]h- _(Poqo - poro + qoro)h 2,

, 1 I0_23 : _ + 4(5O0+ qo -- ro) + P'2 -- P4 -- P5 + P6 + ql -- q3

1

-- q5 + q6 -- rl + r3 -- r,2 + r4]h + -_(Poqo - poro - qoro)h 2,

1 16"[4(p0 - qo + to) + p,_, - P4 - P5 + P6 + ql - qa0_24 -- 2

+ q5-q6-rl +rz +r2-r4]h- 1
_(Poqo - poro + qoro)h "2,

1 1

a_5 - 2 1614(p°+q°+r°)-P2+P4-p5+P6-ql +q3

1
- q5 + q6 -- rl + r3 -- r.2 + r4]h + _(Poqo + poro + qoro)h "2,

, 1 I_6 = _ + 4(po -- qo -- ro) -- P2 + P4 -- P5 + P6 -- ql + q3
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Fo

1

+ q5 - q6 - rl + r3 + r2 - r4]h- _(Poqo ÷ poro - qoro)h 2,'-

l(6fo+fl + f2 + f3 + f4 + £ + f6) h,2

1
+ _[Po(fl - f3) + qo(f2 - f4) + ro(fs - f6)]h 3.

'4-
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